Further, « is inversely related to the particle diameter; for example, a jet of velocity 3.43 m/sec
showed a fall in » from 0.35 to 0.15 as the equivalent diameter increased from 2.24 to 5.92 mm. Therefore
this coefficient is independent of the velocity but is dependent on the characteristics of the bed under these
conditions.

NOTATION
b, bg are the concentration and dynamic radii of jet;
C9 CO; Cm,
Ch are the mass concentrations in the gas phase: current, initial, on the axis, and atthe boundary;
dg, de are the packing diameter and equivalent diameter of solid particles;
Ty is the radius of packing;
U, UO’ Lm’
Up are the velocities: current, initial, on the axis, and at the boundary;
X is the longitudinal coordinate;
y is the transverse coordinate;
£ is the porosity;
Pg is the gas density;
n is the experimental coefficient;
o= (C—Cp)/
(Cm—Cp) is the dimensioniess concentration;
Z = (U—Up)/
(Um—Up) is the dimensionless velocity;
n=y/ is the dimensionless transverse coordinate.
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ALLOWANCE FOR THE THERMAL BOUNDARY LAYER
AND DIFFRACTION EFFECTS IN DETERMINING

THE TRANSIT TIME OF SOUND IN

ULTRASONIC FLOWMETERS

I. A, Kolmakov, N, N, Antonov, UDC 536.2.242:534.24
and I. A, Logvinov

The {ransit time of sound in ultrasonic flowmeters is investigated with allowance for the thermal
boundary layer and diffraction effects.

In determining the time tt in ultrasonic flowmeters, which is equal to the difference between the down-
stream and upstream transit times of sound, it is assumed that the temperature of the liquid is constant over
the entire path from the source fo the receiver. In real situations the liquid flowing in the duct often has a
temperature other than that of the duct wall. In this case we know [1-3] that a thermal boundary layer is
formed, in which there is a certain temperature distribution and outside of which the liquid temperature is
roughly constant and equal to the temperature at the duct entry (Fig. 1). Under these conditions the velocity
of sound propagation varies as a function of the temperature zone through which the sound wave passes. At
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a certain distance ltg from the duct entry (lte is the length of the thermal entrant section) the temperature
boundary layer fades away, whereupon the temperature distribution in the duct acquires a self-similar be-
havior and the temperature conditions of sound propagation differ from those in the thermal entrant section.
The value of the sound velocity in liquids serves as a kind of "scale" for the determination of flow velocity
with an ultrasonic flowmeter, but in many liquids it varies considerably with the temperature, and so the
temperature conditions are directly related fo the transit time t; of a sound signal.

The theory of ultrasonic flowmeters deals with a plane wave, In this case the diffraction effects asso-
ciated with downstream and upstream wave propagation, i.e,, taking place in time t;, are mutually compensat-
ing, In reality, however, because of the finite dimensions of the source and receiver the sound wave is not
plane (it is well known — see [4], for example — that the field of the source has characteristic oscillations
in the near zone, etc.), and the propagation of sound is no longer symmetrical in both directions. This fact
also incurs error in the determination of t;, Below we discuss the problem of evaluating t; with allowance
for these two factors,

We consider the problem of the thermal boundary layer. Directing our attention to non-Newtonian fluids,
we investigate a liquid whose rheology is described by the Cross equation (we note that the solution of this
problem for the Ellis equation is obtained by application of precisely the same procedure). We solve the prob-
lem under the following conditions: 1) the liquid flow is laminar and hydrodynamically stabilized; 2) the tem-
perature of the duct wall at the site of the ultrasonic flowmeter is constant and equal to Ty,; 3) the liquid is in-
compressible; 4) heat transfer by forced convection is much greater than heat transfer by conduction; 5) the
temperature of the liquid at the duct entry is constant over the cross section and equal to Ty; 6) the rheody-
namics and total heat-transfer process are constant; energy dissipation due to viscosity is negligible, and
heat sources and sinks do not exist; 8) the influence of the thermal boundary layer and flow-velocity distribu-
tion over the duct cross section on the wave profile is negligible.

An exact solution of this problem is unobtainable. The approximate solution given below is obtained
from a variational formulation of the problem based on the tenets of nonequilibrium thermodynamics [5-7].
The solution is sufficiently accurate for engineering computations (the error over the numerical method is
2 to 4%). Introducing the generalized dissipation function i, we have the following system of equations in
cylindrical coordinates (the y axis coincides with the duct axis, and the origin with the center of the entry
cross section; see Fig, 1):

or _ 1 _Q_(m-)
Yy roor
_ Bo—He \™ (1)
%) "”+( 1+oné'")
1 aT  oT @T T k 0 [T \2
= — pc,U —k AN ,
b Ta[p” o oy a9 Ot(ar)]

subject to the boundary conditions y =0, 0<r <R, T=T,,y= 0, r=0,9T/Ar=0;y>0, r=R, T =Ty,
The first two equations of the system (1) with the conditions U = 0, 8U/dr = 0 at r = 0 are reducible to

the form
) ) du =] QU 1 dP du ym—t a:u du
(m+1 ‘ —— ey AU N oo, @
G e i G ey I - L

Solving (2) by the small-parameter method (restricted to the first approximation) and expressing the
cross-section-mean velocity in terms of 9P/dy, we obtain an expression for the velocity distribution:

—9oU m—+1 [1_ _,_2]_‘ o (Hg— M) [4U(m+1) ]m+1[1_ L)mﬂ,]' .
Us m (R) WoR™ (m + 2) m (R 3

It will be useful in what follows to transform to a Cartesian coordinate system x0z (Fig. 1). We approxi-
mate the temperature distribution by the polynomial [7]

v T—=To  _ 10 x 5(x)4 2(x\)5_ - (4)

=—0 ] —

Tw — T, AT 7

5

Here 6 (z) is the thickness of the thermal boundary layer. Using the fact that entropy production is mini-
mal close to the steady state, we form the local potential from the last equation of the system (1):
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Fig. 1. Diagram of sound propagation in an ultrasonic flowmeter with a thermal boundary layer.
1) Source plate; 2) receiving plate; 6) thickness of thermal boundary layer; Ty, Ty) temperature
at duct entry and wall; @) angle of misalignment,

Fig. 2, Temperature Tw, °C, versus (T), °C, for various values of R, 6, and U.
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Fig. 3. Ratio At/tty versus (T), °C. I)
Calculated for R = 0.25 m; IT) for R =

0.047 m,
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E* — i( oT - pchsT ——aT dxdz.
2 \ Ox 0z
0 9

We substitute (4) into (5) and vary E* with respect to 6 in accordance with local potential theory, Then,

setting 6E* equal to zero and integrating with respect to z, we obtain for 8

/5 \3 5 \4 55 kIz
LA A S A - , ®)
CIKR) TCZ(R) ‘cs(R) pc,R?

where the coefficients

¢, = 0.77554 (m+2)a,, ¢, = 0.13046 [(m ~ 1) (m+2) % — al] ,

c; = 0.08853 (m + 1) (m+ 2)a,, I =0.29124,

+ — e U (m -+ 1) Jr+!
a,=2U -Cn'——l y Oy = e ” : [ v : ] .
m P R™ (m —+ 2) m
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From (6) we infer the following criterion for applicability of the solution obtained here:

220 ™
RPe (U™ (m + 2)a [0.88752 + 0.28508 (m | 1)]— 0130462}

Q

If we assume that the thickness of the thermal boundary layer grows linearly, for the determination of
6(z) we obtain in place of (6)

8 = 2:U/(Pe {U™ (m -+ 2) 2, [0.88752 -+ 0.28508 (m-+ 1)] — 0.13046a,}). ®

As mentioned, here we disregard possible distortions of the wave profile,. so that it is useful to intro-
duce the mean temperature

1] I
(T>= SUS (x) Tdx/ 5 Us (x)dx (9)
0 0

and to investigate sound propagation in a liquid having the temperature (T). Calculating the latter according
to (9), we obtain

. 24.1078
<= o {(m+2)[12 4+ (m -+ 1) (m+4)1}
x {3.63m (m 1) (m & 2)a, (%)4 1 32.823 [ (m+ 1)2(m+2)a2_a1] 10y

o (2 10,241 (2, + (m - 2) @ | 3)2 +76.1900, i} -
R ‘ \R R

Thus, the thermal boundary layer is accounted for by the introduction of (T), which is related to the
average sound velocity {c).

We now consider the propagation of sound from the source to the receiver, We approximate the oscilla-
tions of the source by the oscillations of a piston radiator with a uniform distribution of the particle-velocity
amplitude over its surface; we also assume that the pulsewidth is such that the receiver does not distort the
field of the source, Finally, we assume that the receiver responds to the average pressure over its surface.

The problem of the source field and, in particular, of determining the time t; can be solved on the basis
of the Helmholtz equation and the boundary conditions for a piston radiator. If we use the Rayleigh form of
the equation for the velocity potential, we obtain for the average pressure created on the receiving plate

(Py= Re w)pe"”’ S S

S1 S,

4S,dS, ) . )

Equation (11) can be used in principal to solve numerically the problem of sound propagation in a moving me-
dium, However, because of the enormous "machine time" required, the numerical integration of (11) is
practically impossible. We have therefore integrated (11) approximately by means of the method of Lommel,
certain readily deducible integral representations of the Bessel functions, and well-known relations from the
theory of Bessel functions, Passing over the cumbersome integration procedure, we give the resulting ex-
pression for t; with allowance for the thermal boundary layer and diffraction:

or M, M,
— . t — Arct ( ) } R
cos (B—ay) + lArc g ( M, )U=_Zz g M, oz (12)

(¢

t =

where

My=L—EV NI NI cos(¢—kE;); My=EV'N? + N sin(y— kEj);
E = zy{ ¢ ) jkav (ady cos 0%
reos(B—a,)  aPcosta, )_\_ A2
Z 22, " 8zpcotay

2

E, = (cosoco—i-dz—,—

2z,
r="UrgsignU/c; ro=h/sin(p—oa); Ay = 2rcos(p—oy);
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Fig, 4, Diffraction correction
versus distance between acous-
tic plates. I) Average liquid
temperature T = 20°C; II) 40°C;
II) 60°C.
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In Eq. (12) {(c) is interpreted as the sound velocity corresponding to the average temperature (T) given
by expressions (10), (6), and (8). The first term in (12) represents the difference between the downstream and
upstream transit times of a plane wave, and the second term is the diffraction correction to that time, It was
assumed in the derivation of (12) that a®/z3 < 1, A}/2ad, < 1, as is almost always the case.

Figure 2 gives curves of (T) as a function of the duct wall temperature Ty, calculated according to Eq.
(10). The temperature of the liquid at the duct entry is T, = 20°C. The constants have the following values:
m = 0.7625; & = 0.0776 W/m°K; #y—H, = 0.161 N+ sec-m?, Curves 1-6 are calculated for 6 = R/4, curves 1-3
for R=0,047m and U =0.01, 0.1, 1.0 m/sec, respectively, and curves 4-6 for R = 0,2536 m and U = 0.01,
0.1, 1.0 m/sec; curves 7-12 are given for 6 = 15R/16, i.e., close to the end of Iy, curves 7-9 for R=
0.047 m, and curves 10-12 for R = 0.2536 m. The velocities U have the same values in the same order gs
for curves-1-6. It follows from the curves of Fig. 2 that the distance from the duct entry to the site where
(T) is determined is very crucial (among other factors affecting (T)).
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Figure 3 gives curves of At/tto = (ttT —1:1;0)/1:t0 in percent as a function of (T},

We can thus use Figs. 2 and 3 to find the error of determination of ty1 due to similarity of the tempera-
tures of the liquid and duct wall, We see in Fig. 3 that the error of determination of t¢T can be very large and,
for a fixed value of (T), increases with decreasing duct diameter. We note for comparison that for water with
Ty =20°C, Ty = 40°C, U=1 m/sec, R = 0.25 m, 6 = 15R/16, and a parabolic velocity distribution in the duct
cross section the error of determination of ty1 is 2.2%, while for Ty = 120°C and identical values for all other
parameters it is 6.1%. The foregoing results and discussion show that with the existence of a difference be-
tween Ty and T the error of measurement of the time tyT will depend, among other things, on the distance
from the duct entry at which the instrument is placed,

Figure 4 gives the quantity Atdi/tti (i = 0, 1, and 2 at temperatures of 20, 40, and 60°C, respectively,
for Atgj and ttj) as a function of the distance z, between the source and receiving plates. The calculations were
carried out for the following values of the parameters v = 1 MHz; @ = 0.01 m; U varied over the range from 0.01
to 9 m/sec; angle of inclination of acoustic channel relative to duct axis 8 = 15°; angle of misalignment of plates
oy = 0°. It is seen in the figure that curves II and II differ significantly from curve I only for small values of
zg. For z; of order 0,4 m the diffraction error Atdi/tij for all three curves becomes negligible (on the order
of thousandths of one percent), i.e., diffraction effects are significant only for relatively short distances be~
tween the plates. We note also that the ratio Atyj/t{j does not depend on the flow velocity in the investigated
range.

NCTATION
T is the shear stress;
4 is the density of liquid;
p is the specific heat at constant pressure;
k is the thermal conductivity;
a is the thermal diffusivity;
P is the pressure;
Pe is the Péclet number;
Re is the real part of a number;
w is the cyclic frequency;
\0) is the particle-velocity amplitude of sound source;
S, Sy are the areas of source and receiving plates;
L is the arbitrary distance between source and receiving plates;
Moy Moo are the viscosities at zero and infinite shear velocities;
a is the common radius of source and receiving plates;
m is the rheological parameter;
')7 is the shear velocity;
ttg, T are the times equal to the difference between the downstream and upstream transit times of

a plane wave at temperature T, = 20°C and at a femperature T = Ty, respectively;
t;i=0,1,2) is the time equal to the difference between the downstream and upstream transit times of a
plane wave at temperature T, = 20°, Ty = 40°, and T, = 60°C;
Atgj (i=0,1, 2) is the difference between diffraction corrections for downstream and upstream wave propaga-
tion at temperatures Ty = 20°, Ty = 40°, and T, = 60°C,
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